AI-La-Y (Aluminum-Lanthanum-Yttrium)

V. Raghavan

An isothermal section at 500 °C for Al-rich alloys of this system was determined recently by [2004Zan].

Binary Systems

The Al-La phase diagram [2000Oka] has the following intermediate phases: La₃Al ($D0_{19}$, Ni₃Sn-type hexagonal), LaAl (CeAl-type orthorhombic), LaAl₂ (C15, MgCu₂-type cubic), LaAl_x (C32, AlB₂-type hexagonal), LaAl₃ ($D0_{19}$, Ni₃Sn-type hexagonal), α La₃Al₁₁ (orthorhombic), and β La₃Al₁₁ ($D1_3$, Al₄Ba-type tetragonal). The Al-Y phase diagram [Massalski2] depicts the following compounds: β YAl₃ (BaPb₃-type rhombohedral), α YAl₃ ($D0_{19}$, Ni₃Sn-

Fig. 1 Al-La-Y partial isothermal section for Al-rich alloys at 500 °C [2004Zan]

type hexagonal), YAl₂ (*C*15, MgCu₂-type cubic), YAl (B_f , CrB-type orthorhombic), Y₃Al₂ (Zr₃Al₂-type tetragonal), and Y₂Al (*C*23, Co₂Si-type orthorhombic). In the La-Y system [Massalski2], γ La and β Y form a continuous body-centered cubic (bcc) solid solution. An intermediate phase denoted δ (*C*19, α Sm-type rhombohedral) forms congruently at 735 °C and ~50 at.% Y from the solid solution between α La and α Y.

Ternary Isothermal Section

With starting metals of Al (99.999 wt.%), La (99.9 wt.%), and Y (99.9 wt.%), [2004Zan] induction-melted or arc-melted about 35 ternary alloys. The samples were annealed at 500 °C for 1 month and quenched in water. The phase equilibria were studied by optical and scanning electron microscopy, electron probe microanalysis and x-ray powder diffraction. The isothermal section at 500 °C constructed by [2004Zan] is redrawn in Fig. 1. LaAl₂ and YAl₂ form a continuous C15-type cubic solid solution, as reported earlier by [1985Ian]. The lattice parameter of this phase varies approximately linearly from 0.8148 nm at LaAl₂ to 0.7855 nm at YAl₂ [2004Zan]. α La₃Al₁₁ and LaAl₃ dissolve 7.3 and 4 at.% Y, respectively, at constant Al content. YAl₃ dissolves 4 at.% La.

References

- **1985Ian:** A. Iandelli and G. Olcese, Structure and Magnetic Investigations on Some RAl₂-MAl₂ Laves Phase Systems, *J. Less-Common Metals*, 1985, **111**, p 145-156
- 2000Oka: H. Okamoto, Al-La (Aluminum-Lanthanum), J. Phase Equilibria, 2000, 21(2), p 205
- **2004Zan:** G. Zanicchi, P. Riani, D. Mazzone, R. Marazza, and R. Ferro, The Isothermal Section at 500 °C of the Al-La-Y Ternary System, *Intermetallics*, 2004, **12**, p 363-371